

Belo Horizonte, September 12 - 15th 2024

In vivo anti-diabetic activity and speciation studies of a non-toxic binuclear oxalate-bridged oxidovanadium(IV) complex

<u>Gabriel B. Baptistella</u>¹, Mateus S. Lopes², Graciele C. M. Manica³, Eduardo L. de Sá¹, Geraldo Picheth², Giovana G. Nunes¹ and Fabiane G.M. Rego²

Departamento de química, UFPR, Curitiba, PR, Brasil
Programa de pós-graduação em ciências farmacêuticas, UFPR, Curitiba, PR, Brasil
Departamento de biociência e saúde única, UFSC, Curitibanos, SC, Brasil
E-mail:ga.baptistella@gmail.com

Thematic Area: Biological Inorganic Chemistry

Keywords: oxidovanadium(IV), oxalate, diabetes

In the last two decades, vanadium complexes have been extensively evaluated as anti-diabetic drugs due to their insulin-like and insulin-mimetic properties. Recently, our research group reported the synthesis, characterization and in vitro antidiabetic activity of the centrosymmetric oxidovanadium(IV) complex $(Et_3NH)_2[\{VO(OH)_2\}(ox)_2(\mu-ox)]$ (V₂), where ox²⁻ = oxalate.² HepG2 cells treated with V₂ in culture medium DMEM increased the uptake of the 2-NBDG (2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4yl)amino]-2-deoxy-D-glucose), a fluorescent glucose analog, with better or similar response than the insulin.² In view of the promising results, the antidiabetic activity of V₂ was evaluated *in vivo*. All animal procedures were pre-approved by the institutional ethical committee (code 1381). An aqueous solution of V₂ was administered by oral gavage to streptozotocin (STZ)-induced diabetic rats at 10 and 30 mg kg⁻¹ for 12 days, without induced liver injury. V₂ at 100 mg kg⁻¹ in association with insulin caused a 3.4 times decrease in blood glucose in STZ rats (424 mg dL⁻¹), reaching concentrations similar to those in the normoglycemic animals (126 mg dL⁻¹). Compared to insulin alone, the association with V₂ caused an additional decrease in blood glucose of 39% and 65% at 30 and 100 mg kg⁻¹, respectively.³ Stability studies performed by electron paramagnetic resonance (EPR) in aqueous solutions contrast with the extensive speciation observed in DMEM. The EPR spectra showed a broad line (g = 1.986 and $\Delta_{\text{D-D}}$ =23 mT), suggesting that the binuclear structure of V_2 is maintained for at least 24 h even at low concentrations. The complex V_2 is a promising candidate as an insulin adjuvant to improve glycemic control in diabetes treatment.

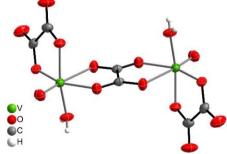


Figure 1. Ball and stick representation of the $[{VO(OH)_2}(ox)_2(\mu-ox)]^{2-}$ anion.

Acknowledgments: UFPR/CAPES/CAPES-PrInt/CNPq

References

- [1] REHDER, Dieter. <u>Inorganica Chim. Acta</u>, **504**, 119445, 2020.
- [2] BAPTISTELLA, Gabriel B. et al. Polyhedron, 198, 115071, 2021.
- [3] LOPES, Mateus S. et al. Pharmaceuticals, 17, 486, 2024.