

Belo Horizonte, September 12 - 15th 2024

Functionalized hexavanadate exerts antitumor activity against triple negative breast cancer cells

<u>Bianca R. Brito,</u> Gabriel B. Baptistella, Karin M. Wurzer, Anderson F. da Cruz, Carolina C. de Oliveira, Eduardo L. de Sá, Giseli Klassen, Giovana G. Nunes

¹Departamento de Química, Universidade Federal do Paraná, Curitiba, Brasil
² Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, Brasil
³ Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Brasil
E-mail: biancarigonatto@gmail.com

Thematic Area: Biological Inorganic Chemistry **Keywords**: Hexavanadate, MDA-MB-231, HB4a

Triple-negative breast cancer is frequently more aggressive and harder to treat than cancers that are hormone receptor-positive (Luminal A and B) or HER2 positive. Polyoxometalates are considered a prominent class of discrete metallic oxides for many biomedical investigations including anticancer, antiviral, and antimicrobial activities.² The hexavanadate functionalized with the tripodal alcohol H₃L^{Et} = 1,1,1-tris(hydroxymethyl)propane, $(C_8H_{20}N)_2[V_6O_{13}\{(OCH_2)_3CCH_2CH_3\}_2]$ (V_6L^{Et} , Fig 1) was synthesized by using a soft method. 51V NMR spectroscopic studies showed that the compound is stable in water and in RPMI culture medium. The antitumoral activity of V₆L^{Et} was assessed in vitro against triple negative breast cancer cells by MTT. The IC₅₀ values (i.e. the dose required to inhibit the growth of 50% of the treated cells) at 24 h are found to be 17.6 and 2.97 μmol L⁻¹ against human (MDA-MB-231) and murine (4T1) cancer cells, respectively. For human breast normal cells (HB4a), the IC₅₀ value was 9.77 µmol L⁻¹. The previous values have been compared to those determined for decavanadate, $[V_{10}O_{28}]^{6-}$, of 2.53 µmol L⁻¹ for MDA-MB-231 and 0,966 µmol L⁻¹ for HB4a. The Wound Healing assay using the MDA-MB-231 cells showed that V₆L^{Et} reduced the cell migration with a larger gap area (87.6% in 24 h and 79.8% in 48 h). SEM images showed the appearance of vesicles in cells treated with both compounds. However, only V_6L^{Et} triggered changes in the cell morphology from fusiform to amoeboid. The gene expression assay with V₆L^{Et} in the MDA-MB-231 cell line resulted in an increase in the RIPK3 gene expression by 15 times, which is compatible with a necroptosis mechanism in the presence of the POV. The cytotoxicity assays of V₆L^{Et} in both human and murine cell lines are promising for future in vivo studies.

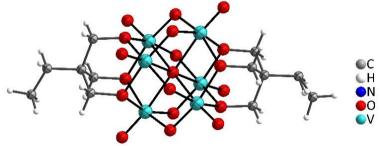


Figure 1. Ball and stick representation of (C₈H₂₀N)₂[V₆O₁₃{(OCH₂)₃CCH₂CH₃}₂] V₆L^{Et}.

Acknowledgments: UFPR/ CAPES/ CNPq/ FUNDAÇÃO ARAUCÁRIA.

References

- [1] Bianchini, G. et al., Nat. Rev. Clin. Oncol., 13 (11), 674, (2016).
- [2] Mousavi, S. M. et al., <u>Inorg. Chem. Commun.</u>, **146**, 110074, (2022).