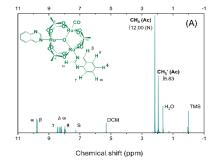
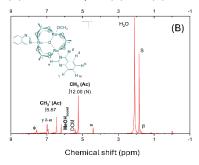


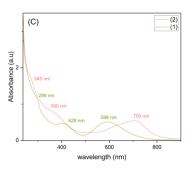
Belo Horizonte, September 12 - 15th 2024

Effects of a monoelectronic oxidation on trinuclear ruthenium complexes Thuany G. Toledo ¹ and Sofia Nikolaou¹

¹Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil


E-mail: thuanygalli@usp.br


Thematic Area: Biological Inorganic Chemistry


Keywords: ruthenium, paramagnetic anisotropy, carbonyl.

Studies of trinuclear ruthenium carboxylates date back to the 30s, with one of the earliest syntheses described by Mond.¹ Trinuclear ruthenium complexes with the formula [Ru₃O(CH₃COO)₆(L)₃]ⁿ (where L = N-heterocyclic ligand, CO, NO etc., n = 0/+1) are studied for several applications,^{2,3} and the main interest of our research group is to develop new candidates to metallo-drugs.² Symmetrical compounds with three identical ligands exhibit planar triangular structure with angles close to 120°. In contrast, asymmetric clusters, such as those with a CO ligand, have a geometry resembling an isosceles triangle, with angles deviating from 120°.4 These compounds are characterized by the interaction between the d_{xz} orbitals of the ruthenium ions and the p_z orbital of the central oxide ion, forming a delocalized orbital involving the four atoms of the [Ru₃O] unit. To better understand their chemistry, a comparative study of $[Ru_3O(CH_3COO)_6(qui)_2CO]$ (1) and $[Ru_3O(CH_3COO)_6(qui)_2(CH_3OH)]PF_6$ (2) $(qui = 1)^{-1}$ quinazoline) were performed. These compounds are related since 2 is obtained through a monoelectronic oxidation of 1, followed by CO substitution by a solvent molecule. In the reduced complex 1, the coordination of the carbonyl ligand localizes the valence of one ruthenium ion (Ru₂^{|||}ORu^{||}). Cyclic voltammetry reveals that CO's higher affinity for Ru^{||} shifts the E_{1/2} value of the $[Ru₃O]^{0/+1}$ reduction to more positive values compared to complex **2**. Additionally, compound **1** is diamagnetic, while complex 2 have one unpaired electron, which causes paramagnetic anisotropic shifts, significantly altering hydrogen chemical shifts compared to 1 and free quinazoline in their 1H NMR spectra (Figure 1A and 1B). The strong π -acceptor character of the carbonyl ligand causes a large hypsochromic shift in the intracluster (IC) transition band in the electronic spectrum (λ_{IC2} = 700 nm and λ_{IC1} = 598 nm, Figure 1C). Furthermore, a bathochromic shift in the C≡O bond's stretching frequency occurs due to π -backbonding with the Ru^{II} ion ($\nu_{\text{free CO}}$ = 2143 cm⁻¹ and $\nu_{\text{coordinated CO}}$ = 1936 cm⁻¹).

Figure 1. ¹H-NMR spectra of the complex (1) (A) and (2) (B) in CDCl₃ (2 x 10⁻² M) and electronic absorption spectra (C) of the complex (1) and (2)

Acknowledgments: FAPESP, CAPES and CNPq.

References

[1] Mond, A. W.; *J. Chem. Soc.*,1247, **1930**. [2] Nikolaou, S., do Nascimento, L. G. A., & Alexiou, A. D. P. *Coord. Chem. Rev.*, 494, **2023**. [3] Alexiou, A. D. P., Dovidauskas, S., & Toma, H. E. *Quím. Nova*, 785, **2000**. [4] Cotton, F. A.; Norman, J. G. Jr. *Inorg. Chim. Acta.*, 411, **1972**.