

Belo Horizonte, September 12 - 15th 2024

A heteroleptic copper(II) complex with 6-trifluoromethyluracil and 2,2'-bipyridine: synthesis, spectroscopic characterization and biological activities

<u>Gabriele de M. Pereira</u>¹, Julia H. Bormio Nunes², Fernando R. G. Bergamini³, Silmara Cristina L. Frajácomo⁴, Wilton R. Lustri⁴ and Pedro P. Corbi¹

Institute of Chemistry, University of Campinas – UNICAMP, Campinas, SP, Brazil.
Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.
Laboratory of Synthesis of Bioinspired Molecules, Institute of Chemistry, Federal University of Uberlandia - UFU, Uberlandia, MG, Brazil.

⁴ Biological and Health Sciences Department, UNIARA, Araraquara, SP, Brazil E-mail: gabriele menezzes@hotmail.com; ppcorbi@unicamp.br

Thematic Area: Biological Inorganic Chemistry

Keywords: 6-trifluoromethyluracil, 2,2'-bipyridine, copper(II), biological activity assays.

Nucleotide analogues are a class of molecules that presents antimicrobial and antitumor properties. Some examples are the anticancer drug 5-fluorouracil and the antiviral agent acyclovir [1,2]. Due to its well known medicinal applications and its versatility in the viewpoint of coordination chemistry, the nucleotide analogues have also been investigated in the synthesis of metal-based compounds seeking new bioactive agents for treatment of infectious diseases. Here, we present the synthesis of a copper(II) complex with 6-trifluoromethyluracil (L₁) and 2,2'-bipyridine (bpy), and its antibacterial activities. For the synthesis of the complex, a methanolic solution of the precursor Cu-bpy (0.50 mmol in 4.0 mL) was first prepared. Then, the Cu-bpy solution was added to an alkaline solution of L₁ (1.0 mmol in 6.0 mL of a water:methanol solution). The reaction was maintained under stirring and at room temperature for 4 hours, leading to the formation of a blue precipitate. The solid was collected by vacuum filtration, washed with methanol and dried in a desiccator over P2O5. The composition found for this complex was CuL₁Bpy plus one water molecule (CuC₂₀H₁₄F₆N₆O₅·H₂O). Anal. Calc. (%): C 40.31; H 2.37; N 14.10. Found (%): C 40.32; H 1.69; N 13.98. Coordination of the ligand L_1 to Cu(II) was evaluated by the FTIR measurements. The obtained data suggest that L₁ coordinates to the metal by its nitrogen and oxygen atoms. The antibacterial activity of the complex was evaluated by a minimum inhibitory concentration (MIC) assay. The CuL₁Bpy complex was active over Gram-positive Staphylococcus aureus and Bacillus cereus, and Gram-negative Escherichia coli and Pseudomonas aeruginosa bacterial strains with MIC values in the range of 0.832 - 3.328 mmol·L⁻¹. Further studies are envisaged to evaluate its possible biomolecular targets.

Acknowledgments: The authors are grateful to the Brazilian agencies CAPES, FAPESP (grant # 2021/10265-8 Cancer Theranostics Innovation Center CancerThera-CEPID), FAEPEX and CNPq (309800/2021-8). JHBN thanks the FWF (Austrian Science Fund) for her ESPRIT grant (ESP74).

References

- [1] Nunes J. H. B et al., Toxicol. in vitro, 60, 359 (2019).
- [2] Elion G. B. et al., Proc. Nat. Acad. Sci. 74, 5716 (1977).