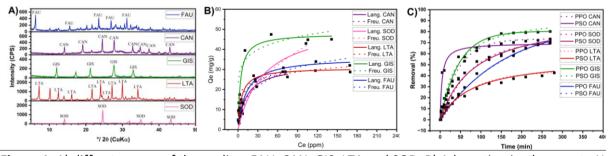


Belo Horizonte, September 12 - 15th 2024

Obtaining zeolites synthesized from industrial waste for application in methylene blue adsorption


<u>Débora de Souza Pinheiro^{1*}</u>, Luciano Fernandes Magalhães² and Gilberto Rodrigues da Silva², Victor Augusto Araújo de Freitas¹

¹Department of Natural Sciences, Federal University of São João del-Rei, São João del-Rei, Brazil ²Mining Engineering Department, Federal University of Minas Gerais, Belo Horizonte, Brazil *E-mail: deboradsp98@hotmail.com

Thematic Area: Materials Chemistry and Catalysis

Keywords: zeolites; adsorption, methylene blue, industrial waste

In this work, the zeolites structures LTA, FAU, SOD, CAN and GIS were synthesized by the alkaline fusion method followed by hydrothermal treatment in a autoclave using aluminum anodization residues (RAA) and waste glass powder (WGP) as alternative sources of SiO_2 and Al_2O_3 , respectively. The zeolite structures were confirmed by X-Ray diffraction (Figure 1A). Zeolites were used to investigate the kinetic mechanism of adsorption of methylene blue dye. The experiments were carried out in batch mode at pH = 3, 6 and 10 at 25 °C. The data obtained in the adsorption isotherm study were adjusted by the non-linear Langmuir and Freundlich models, which Langmuir being the best fitting model with R^2 values > 0.9 for all zeolites (Figure 1B). The Qmax values were close to the Qexp values whose best removal efficiency was obtained at pH = 6 for the GIS zeolites (93.2%) and CAN (77.9%). At pH = 3 the best removal efficiency was SOD (88.3%) followed by LTA (84.9%). Meanwhile, at pH = 10, FAU zeolite was the most efficient (97.6%). The kinetic data were best fitted with the non-linear pseudo-second order model (PSO) with values of 0.97 > R^2 > 0.99 for all zeolites investigated (Figure 1C) with K_2 values between 1.18×10^{-4} and 4.57×10^{-4} .

Figure 1. A) diffractograms of the zeolites FAU, CAN, GIS, LTA and SOD, B) Adsorption isotherms at pH = 6 adjusted by the Langmuir and Freundlich models and C) Adsorption kinetics adjusted by the pseudo-first order (PPO) and pseudo -second order (PSO) at pH = 6.

Acknowledgments: I would like to thank the funding agencies, especially FAPEMIG for the financial incentive through scholarships and research grants through the approved projects: APQ-01336-22 and FAPEMIG/RED-00161-23.

References

- [1] M. Alaqarbeh, Green Applied Chemistry, volume 13, page 43, 2021.
- [2] L. Bieseki et al. Cerâmica, volume 59, page 466, 2013.