

Belo Horizonte, September 12 - 15th 2024

Computational Study of the Separation of Natural Gas Components in Anion-Pillared Metal-Organic Frameworks (APMOFs)

Herick Ribeiro Torres¹, Heitor Avelino de Abreu¹, and Guilherme Ferreira de Lima¹

¹Department of Chemistry, Federal University of Minas Gerais , Belo Horizonte, Brazil E-mail:herick.rtorres@gmail.com

Thematic Area: Materials Chemistry

Keywords: Metal Organic Framework, Computational Simulation, Material characterization

To meet the proposals of the United Nations Framework Convention on Climate Change (UNFCCC) held in 2015, natural gas has been studied as a transitional energy matrix due to its low emission of greenhouse gases^[1]. However, it contains undesirable compounds such as N₂, NO_x, H₂S, and some light hydrocarbons (C₂₋₄H₅). The search for materials capable of separating these gases has become a field of significant scientific development, with metal-organic frameworks (MOFs) being strong candidates for this purpose^[2,3]. Therefore, this study aims to investigate how the MOFs CrOFOUR-1-Ni and MoOFOUR-1-Ni function in the separation of gases present in natural gas at a theoretical level. For this purpose, the Density Functional Theory (DFT) formalism was used for structural optimization, presenting an average error of less than 0,01% in lattice parameters. The simulation of the CH₄ adsorption isotherm was carried out in RASPA (Figure 1), showing good agreement with experimental results. The adsorption of other light hydrocarbons is going to be presented.

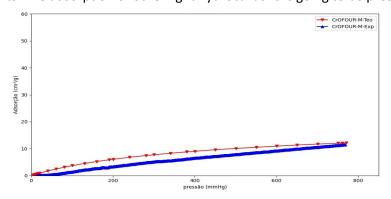


Figure 1: Methane adsorption in CrOFOUR-1-Ni

Acknowledgments: CNPq, CAPES, UFMG, GPQIT, ACQUA, RENOVAMin, FAPEMIG.

References

[1] IEA (2023), *Energy Statistics Data Browser*, IEA, Paris. Disponível em: https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser.

[2] GRIGOLETTO, Sabrina et al. Dynamical and electronic properties of anion-pillared metal-organic frameworks for natural gas separation. Physical Chemistry Chemical Physics, v. 25, n. 40, p. 27532-27541, 2023. [3] SAHOO, R.; DAS, M. C. C2s/c1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (mofs). *Coordination Chemistry Reviews*, Elsevier, v. 442, p. 213998, 2021.