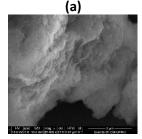
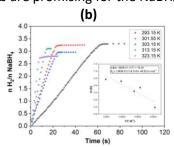


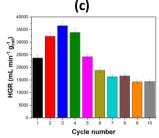
Belo Horizonte, September 12 - 15th 2024

Hydrogen evolution from NaBH₄ using Pt nanoparticles supported on (2,2'-bipyridine) Cobalt (II) Titanoniobate nanocomposite.

<u>Juliana P. Gómez¹</u>, Geraldo M. de Lima¹, Luciano A. Montoro¹, Camila S. de Paula¹, Veronica E. Machado², Noemí C. S. de Souza², Tiago A. Silva², Renata P. Lopes Moreira², Fabrício V. de Andrade³, José D. Ardisson⁴


¹Chemistry Department, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil


- ² Chemistry Department, Universidade Federal de Viçosa, Viçosa, Brazil
- ³ Chemistry Department, Univesidade Federal de Itajubá, Itabira, Brazil


Thematic Area: Materials Chemistry.

Keywords: Titanoniobate, Nanocomposite catalyst, Hydrogen storage.

The excessive use of fossil fuels has increased environmental pollution through greenhouse gas emissions¹. As a result, interest in sustainable energy alternatives is growing. Hydrogen (H₂) has emerged as a promising option, but its low density and boiling point make handling problematic, especially for storage and transportation. Hydrogen storage materials, such as sodium borohydride (NaBH₄), have become an alternative for H₂ evolution due to their commercial availability and high H₂ storage capacity². In the present investigation, it was prepared platinum nanoparticles (Pt NPs) supported on (2,2'-bipyridine) cobalt (II) titanoniobate nanocomposite (CoTiNb) as a catalyst. KTiNbO₅ was used as the starting material for the production of HTiNbO₅. The latter compound was synthesized by suspending 10 g KTiNbO₅ in 100 mL 4 mol L⁻¹ HNO₃ solution. The obtained HTiNbO₅ was dispersed in the distilled water, and then Bu₄NOH solution (0.297 mol L⁻¹) was added, forming Bu₄NTiNbO₅. After stirring for 7 days, a supernatant colloidal solution was collected, and then treated with Co(bpy)Cl₂·XH₂O complex. The dispersion was stirred for 72h, forming a pink CoTiNb precipitate, Fig. 1(a) SEM image for CoTiNb can be observed. The CoTiNb was decorated with Pt NPs using the reduction method employing NaBH₄. The kinetics of NaBH₄ hydrolysis was investigated by varying different parameters such as Pt concentration, NaBH₄ concentration, NaOH effect and temperature; with which the activation energy (Ea) was calculated to be 48.52 kJ mol⁻¹, Fig. 1(b). The reusability of CoTiNb with Pt NPs was evaluated, obtaining an increase in the hydrogen generation rate (HGR) of 53.98% up to cycle 3, and the catalyst retained 61% of its original HGR after 10 cycles, Fig. 1(c). These results indicate that the Pt NPs supported on CoTiNb are promising for the NaBH₄ hydrolysis to generate H₂.

Figure 1. (a) SEM image for CoTiNb; **(b)** Effect of temperature on the volume of H₂ produced. Inset: Correlation between In [k] versus 1/T; **(c)** Pt NPs supported on CoTiNb catalyst reuse cycles.

Acknowledgements: The authors wish to express their gratitude for FAPEMIG (RED-00144-22, APQ-0008321, APQ-03113-22, APQ-01060-17) and CNPq (405828/2022-5). **References**

- [1] NETSKINA, O. V. et al., <u>International Journal of Hydrogen Energy</u>, **46**, 5459 (2021).
- [2] SALMAN, M. S.; AGUEY-ZINSOU, K.F., Advanced Energy and Sustainability Research, 5, 2300215 (2024).

⁴ Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, Brazil E-mail: julianapgomez29@gmail.com