

Belo Horizonte, September 12 - 15th 2024

Manipulation of Energy Migration towards Long-lived Mn²⁺ Upconversion Emission and Enhanced Singlet Molecular Oxygen Generation

Zahid U. Khan¹, Latif U. Khan², Fernanda M. Prado¹, Iram Gul³, Thiago Lopes³, Leonardo M. A. Ribeiro¹, Mauro Bertottia¹, Magnus Gidlundd⁴, Hermi F. Brito¹, Paolo Di. Mascio¹

¹Department of biochemistry, Institute of Chemistry, University of São Paulo (USP), 05508-000, São Paulo-SP, Brazil.

²Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME) P.O. Box 7, Allan 19252, Jordan.

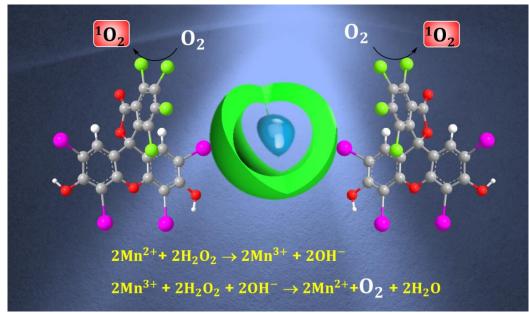
³Research Centre for Greenhouse Gas Innovation, University of Sao Paulo (USP), 05508-030, São Paulo – SP, Brazil.

⁴dInstitute of Biomedical Sciences-IV, University of São Paulo (USP), 05508-000, São Paulo-SP, Brazil.

E-mail: zahid@iq.usp.br

Thematic Area: Material Chemistry

Keywords: Upconversion nanoparticles, Nanosensitizers, Singlet oxygen generation, Lanthanides, Manganese, Hypoxia.


Nanosensitizers having long-lived upconversion emission under near-infrared (NIR) excitation offer great advantages in terms of reduced background noise and prolonged signal detection for deep tissue therapy of cancer. Herein, we demonstrated a systematic mechanism of energy migration towards achieving the long-lived Mn²⁺ upconversion emission in the multilayered core-shell-shell lattice of NaGdF₄:Yb³⁺,Tm³⁺,Ca²⁺/NaGdF₄:Yb³⁺,Ca²⁺/NaGdF₄:Mn²⁺ upconversion nanoparticles, following the Yb³⁺ \rightarrow Tm³⁺ \rightarrow Gd³⁺ \rightarrow Mn²⁺ intermetal ions energy transfer pathway. Besides, a rational design of nanosensitizer was displayed based on incorporating the Er3+ ion into the intermediate shell of multishell nanoparticles (NPs), which was subsequently conjugated with Rose Bengal (RB) sensitizer to enable the enhancement in singlet molecular oxygen (¹O₂) generation under excitation at 980 nm NIR Laser. The higher energy intense emission in the UV-blue visible region from Tm³+ was achieved through optimization of Ca²⁺ amount in the core-shell NPs, followed by its subsequent energy migration to Mn²⁺ ion incorporated at the outer shell. The Mn²⁺ ions were strategically doped in the outer shell of NPs to leverage the catalytic activities of Mn²⁺ for H₂O₂ decomposition and decrease the backward energy transfer to Tm³⁺ ion, which led to a long lifetime of Mn²⁺ (~34 ms), arising from the spin-forbidden ${}^4T_{1g} \rightarrow {}^6A_{1g}$ transition within 3d⁵ configuration. It is noteworthy that the nanosensitizer demonstrated high ¹O₂ (~0.39 μM) generation even though at a very low concentration (5 μg/mL) under a laser power of 2 mWcm⁻². Additionally, the hydrogenase-like catalytic activities of Mn²⁺ exhibited significant oxygen production through the decomposition of H₂O₂ (Figure 1). Hence, these findings might contribute to the development of convenient multifunctional nanosensitizers for multimodal bioimaging and therapeutic features, including efficient ¹O₂ generation and catalytic decomposition of H₂O₂ (found excessively in tumor environment) to oxygen for alleviating the hypoxia.

Belo Horizonte, September 12 - 15th 2024

Figure 1. Illustration of singlet oxygen generation and decomposition of H2O2 by hydrogenase-like catalytic activities of NPs.

Acknowledgments: FAPESP (No. 2021/00356-6).

References

- 1) Khan, Z. U.; Khan, L. U.; Malta, O. L.; Brito, H. F.; Gidlund, M.; Mascio, P. Colloidal Quantum Dots as an Emerging Vast Platform and Versatile Sensitizer for Singlet Molecular Oxygen Generation. *ACS Omega* (*ACS*) 2023, 8, 38, 34328–34353.
- 2) Khan, Z. U.; Khan, L. U.; Uchiyama, M. K.; Prado, F. M.; Faria, R. L.; Costa, I. F.; Miyamoto, S.; Araki, K.; Brito, H. F.; Gidlund, M.; Mascio, P. Singlet Molecular Oxygen Generation *via* Unexpected Emission Color-Tunable CdSe/ZnS Nanocrystals for Applications in Photodynamic Therapy. *ACS Applied Nanomaterials (ACS)*, 2023, 6, 5, 3767–3780