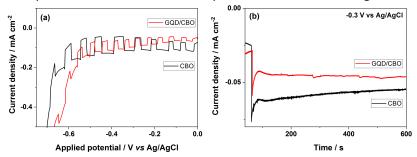






Belo Horizonte, September 12 - 15<sup>th</sup> 2024

## The improved photoelectrochemical stability of a CuBi<sub>2</sub>O<sub>4</sub> photocathode provided by graphene quantum dots cocatalysts


## Luiz F. H. Villela<sup>1</sup>, Mauricio A. Melo <sup>1</sup>

<sup>1</sup>Institute of Chemistry, Fluminense Federal University, Niterói, Rio de Janeiro 24020-141, Brazil E-mail:luizhaddad@id.uff.br

Thematic Area: Materials Chemistry and Catalysis

Keywords: Solar water splitting, copper-based photocatalyst, sustainable fuel (maximum of 3)

Among several semiconductors that have recently surfaced as photocatalysts for the sunlight-driven water splitting, copper bismuth oxide (CuBi<sub>2</sub>O<sub>4</sub>) has been considered one of the most promising. It is a cheap and non-toxic material that possesses improved structural and photochemical features compared to some of the most employed photocatalysts. These features include smaller band gap, longer charge carriers diffusion and adequate valence band energy for the water reduction semireaction. Nonetheless, some drastic limitations still hinder the performance of CuBi<sub>2</sub>O<sub>4</sub>, such as high electron transfer resistance at the solid/liquid interface and structural instability under irradiation. To circumvent those limitations, we loaded the surface of the CuBi<sub>2</sub>O<sub>4</sub> thin films with graphene quantum dots (GQD) as cocatalysts to promote rapid electron transfer pathway and to inhibit photocorrosion.<sup>2</sup> In this work, visible-light absorbing phase-pure CuBi<sub>2</sub>O<sub>4</sub> ultrathin films, with band gap of 2.0 eV, was obtained through an electrodeposition method. Graphene quantum dots were synthesized through a hydrothermal route using pyrene as the precursor and loaded onto the surface of CuBi<sub>2</sub>O<sub>4</sub> through a spin coating method. Photoelectrochemical tests in a Na<sub>2</sub>SO<sub>4</sub> electrolyte (pH 6.5) of the pristine CuBi<sub>2</sub>O<sub>4</sub> ultrathin films resulted in a photocurrent density of -0.116 mA cm<sup>-2</sup> at -0.3 V<sub>Ag/AgCl</sub>. After the surface modification with GQD, the photocurrent density changed to -0.102 mA cm<sup>-2</sup> at -0.3 V<sub>Ag/AgCl</sub> (Fig. 1a). However, water reduction overpotential reduced and the photocurrent stability showed an improvement, as it retained 79 % of the initial photocurrent density over the course of 600 s under simulated sun light irradiation (AM 1.5G, 100 mW cm<sup>-2</sup>). The bare photoelectrode retained only 61 % of the initial photocurrent density (Fig. 1b). Future work involves the optimization of the GQD loading and post-thermal treatment under inert atmosphere to further improve the charge transfer rates, which still hinder the performance of our modified photoelectrode, according to our results.



**Figure 1.** Photoelectrochemical (a) and chronoamperometry (b) measurements of CuBi<sub>2</sub>O<sub>4</sub> and GQD-modified CuBi<sub>2</sub>O<sub>4</sub> electrodes in Na<sub>2</sub>SO<sub>4</sub> electrolyte under a simulated sunlight irradiation.

Acknowledgments: FAPERJ (E-26/210.812/2021), Shanghai University of Engineering Science (SUES)

## References

- [1] N. T. Hahn et al., J. Phys. Chem. C, 116, 6459 (2012).
- [2] M. A. Melo and F. E. Osterloh, ACS Appl. Mater. Interfaces, 10, 27195 (2018).