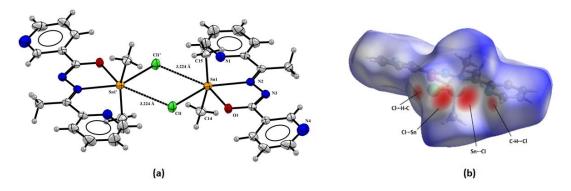


Belo Horizonte, September 12 - 15th 2024

Synthesis, Crystal Structure and Non-covalent Interactions of New Organotin(IV) Complex with Hydrazone Ligand


Rafaela Caixeta de Souza^{1*} and Claudia Cristina Gatto¹

¹Laboratory of Inorganic Synthesis and Crystallography, University of Brasilia –
Institute of Chemistry, Brasília-DF, Brazil
E-mail: *rafaelacaixetasouza@gmail.com; ccqatto@unb.br

Thematic Area: organometallic chemistry

Keywords: crystal structure, non-covalent interactions, organotin(IV) complex.

Hydrazones are important Schiff bases in bioinorganic and coordination chemistry due to their versatility, and these ligands are derived from a class of biologically active drugs important for medicinal chemistry, highlighting their extensive pharmacological property, including antitumor, antiviral and antituberculosis activities. A considerable number of organotin(IV) complexes with hydrazone ligands have been intensively studied for their bactericidal and antitumor activities. The present work reports the synthesis, crystal structure, and investigation of non-covalent interactions of new organotin(IV) complex [Sn(L)Me₂Cl] with 2-acetylpyridinenicotinhydrazone (HL). The Sn(IV) atom is coordinated by a bidentate ligand molecule by the *NO*-donor system, two methyl groups, and a chloride ion. Additionally, a chloride intermolecular interaction with the metal center is observed resulting in a distorted pseudo-octahedral geometry (Figure 1a). Non-covalent interactions in the structure were evaluated with Hirshfeld surface analysis, showing strong red regions which indicate the presence of C–H····Cl and Sn···Cl interactions (Figure 1b).

Figure 1. (a) Molecular structure of [Sn(L)Me₂Cl] with 30% probability displacement ellipsoids and interactions represented by dashed lines. (b) Hirshfeld surface mapped with d_{norm} for the complex.

Acknowledgments: FAPDF, CNPg and UnB.

References

- [1] P. Santiago et al., Inorganica Chimica Ata, 508, 119632 (2020).
- [2] A. Despaigne et al., Journal of Brazilian Chemical Society, 21, 1247-1257 (2010).
- [3] H. Yin et al., Journal of Organometallic Chemistry, 690, 3714-3719 (2005).