

Belo Horizonte, September 12 - 15th 2024

Experimental and theoretical studies of two new nickel(II)-based complexes containing the 2-methoxyethyl xanthate as a ligand

Daniella B. Miranda 1, Guilherme P. Guedes 1, 2, Susana Quintal 2 and Glaucio B. Ferreira 1, 2

¹Programa de Pós-Graduação em Química, Universidade Federal Fluminense, Niterói, Brazil ²Departamento de Química Inorgânica, Universidade Federal Fluminense, Niterói, Brazil E-mail: daniellabrito@id.uff.br

Thematic Area: Photochemistry

Keywords: Xanthate, thermodynamic analysis, Crystal Structure

Studies involving Ni(II)-containing complexes have gained prominence due to their potential applications in the fields of biology, industry, and catalysis. 1,2 Keeping that in mind, this work describes the synthesis, spectroscopic characterization, and the crystal structure of two new Ni(II) complexes with 2-methoxyethyl xanthate ligand. Suitable single crystals of the complexes for X-ray diffraction studies were obtained through slow solvent diffusion (MeOH/EtOH). The crystal structure revealed neutral and anionic compounds with molecular formulas, $[Ni(S_2CO(CH_2)_2OCH_3)_2]$ (1) and $K[Ni(S_2CO(CH_2)_2OCH_3)_3]$ (2), in which the xanthate ligand is coordinated to the nickel ion in a bidentate fashion, affording in a square-planar and octahedral distorted geometries (Figure 1a-b), respectively. For (2), S2CO(CH2)2OCH3 further fills the coordination sphere. In addition, theoretical thermodynamic analysis was performed at M06L/6-311++G**+LANL2DZ level, using Gaussian 09. This analysis showed that the neutral complex has a higher trend of formation than the anionic complex ($\Delta G_{NEUTRAL} = -55.01$ and $\Delta G_{ANIONIC} = -15.86$ kcal mol⁻¹) due to the higher repulsion between the ligands in the anionic complex, which causes a lower superposition energy between the M-L bond orbitals. These results were corroborated by the energy decomposition (EDA) and natural bond orbital analyses (NBO) (Figure 1c-d).

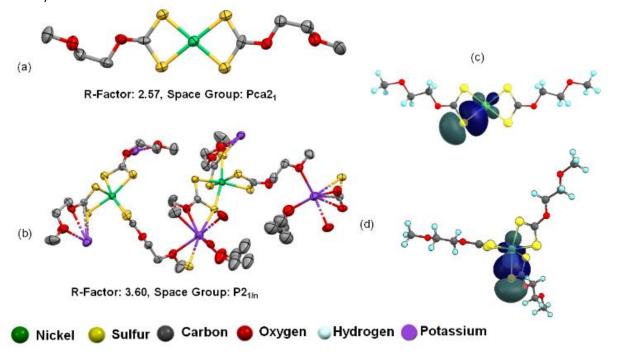


Figure 1. Crystal structures: a) [Ni(S₂CO(CH₂)₂OCH₃)₂], b) K[Ni(S₂CO(CH₂)₂OCH₃)₃] and NBO: c) square, c) octahedral

Acknowledgments: CNPq, CAPES, FAPERJ, LDRX, LMQC, LAME e PROPPi UFF.

References

- [1] B. Cvek, V. Milacic, J. Taraba, P. Q. J. Dou. Med. Chem. **51**, 6256 (2008).
- [2] Y. Wei, S. X. Liu, H. Mueller-Bunz, M. Albrecht. ACS Catal. 6, 8192 (2016).