

Belo Horizonte, September 12 - 15th 2024

SYNTHESIS AND POTENTIAL APPLICATION OF MnO_2 NANOPARTICLES FOR PHOTODYNAMIC THERAPY IN CANCER TREATMENT

<u>Firdaus Adeola Adegboye</u>, Eduardo Rodrigues da silva, Juliana Cristina Biazzotto Moraes, Roberto Santana da Silva

Faculty of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil

E-mail: adegboyefirdaus@usp.br

Thematic Area: Photochemistry

Keywords: MnO_2 Nanoparticles, H_2O_2 , Photodynamic therapy

Cancer remains a pressing global health challenge, necessitating the development of innovative, effective and safer therapeutic strategies. In this study, we embarked on the synthesis of manganese dioxide (MnO_2) nanoparticles with a focus on characterizing their properties for potential application in cancer photodynamic therapy (PDT). Our synthesis method yielded MnO₂ nanoparticles suspended in solution, with sizes consistently <100 nm over a period of four days. Notably, this approach proved to be both facile and cost-effective, utilizing readily available and inexpensive reactants compared to other methods. The synthesized MnO_2 nanoparticles exhibit promising attributes for PDT applications. It demonstrate the ability to react with hydrogen peroxide (H_2O_2) , resulting in the generation of manganese ions (Mn^{2+}) , water (H_2O) , and oxygen (O_2) . This property holds particular significance for cancer treatment, given that cancer cells overproduce H_2O_2 . Additionally, MnO_2 nanoparticles (MnO_2-NP) effectively generate singlet oxygen $(^1O_2)$ when combined with photosensitizers such as methylene blue, in both buffer and aqueous environments. To evaluate it potential clinical utility, we assessed the biocompatibility and cytotoxicity of the MnO2-NP on SK-MEL melanoma cells. Encouragingly, our findings reveal no discernible cytotoxic effects, underscoring the potential of these NP as safe and promising agents for cancer therapy. In summary, our study presents a straightforward and economical method for synthesizing MnO_2 -NP with favorable characteristics for PDT applications.

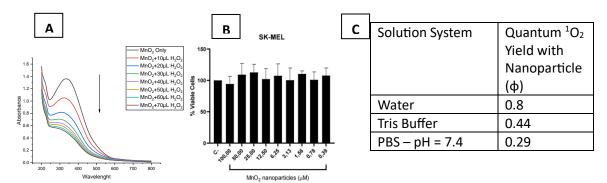


Figure 1: **A)** UV visible spectrum of MnO_2 under reaction with H_2O_2 in PBS pH = 7.4; **B)** Cell viability studies of MnO_2 in SK-MEL cancer cells; **C)** Effect of the MnO_2 -NP in the singlet oxygen quantum yield in different medium.

Acknowledgments: CAPES-PROEX, CNPq and FAPESP

References

- [1] Zhu W. et al., Advanced Functional Materials, 26(30), 5490-5498 (2016).
- [2] Zhang L. et al., Journal of hazardous materials, 190(1-3), 780-785 (2011).