

Belo Horizonte, September 12 - 15th 2024

High symmetry and unusually long lifetimes in RE³⁺-doped Y₂Sn₂O₇ materials

Maria Vitória Guidorzi¹; Fernanda Hediger Borges¹ and Rogéria Rocha Gonçalves

¹Laboratório de Materiais Luminescentes Micro e Nanoestruturados — Mater Lumen, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto E-mail: guidorzim@usp.br

Thematic Area: Rare earth

Keywords: rare earth, pyrochlore, lifetime (maximum of 3)

Pyrochlore compounds with the general formula A2B2O7 have been explored as promising host materials for rare earth (RE3+) ions. These materials crystallize in a pyrochlore structure, where trivalent cations (A³⁺) and tetravalent cations (B⁴⁺) alternate in a Face Centered Cubic (FCC) lattice with vacant anion sites ensuring charge neutrality. Both A³⁺ and B⁴⁺ ions exhibit D_{3d} symmetry [1]. RE³⁺ can be easily incorporated into this lattice due to their similar ionic radii with A3+ cations, assuming the same symmetry. In this sense, a detailed investigation of RE^{3+} -doped $Y_2Sn_2O_7(RE^{3+} = Eu^{3+}, Er^{3+} \text{ and } Yb^{3+})$ powder prepared by the coprecipitation method followed by annealing at higher temperatures (700 to 1300 °C) is presented. This work explores the stabilization of the crystalline phase of Y₂Sn₂O₇ with changes in annealing temperature, monitoring structural changes through X-ray diffraction and Raman spectroscopy. Additionally, static and dynamic measurements of RE³⁺ luminescence are investigated, elucidating not only the crystalline structure but also the distribution of active ions. X-ray diffraction of the RE³⁺-doped Y₂Sn₂O₇ shows the crystallization of pyrochlore phase, with space group Fd3m, and cassiterite SnO₂ as a secondary phase. The stabilization of the crystalline phase of interest was confirmed via Rietveld refinement and Raman spectroscopy, indicating higher crystallinity at higher temperatures. The Eu³⁺ emission spectra were obtained under excitation at different wavelength, at the charge transfer (CT) band (~260nm), and at the electronic transitions ${}^{7}F_{0} \rightarrow {}^{5}L_{6}$ (394nm) ${}^{7}F_{0} \rightarrow {}^{5}D_{2}$ (464nm) and ${}^{7}F_{0} \rightarrow {}^{5}D_{1}$ (525nm), where the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ (J = 0, 1, 2, 3 and 4) transitions could be observed. These spectra showed the presence of Eu³⁺ ions in a high-symmetry site, confirming their incorporation into the lattice [2]. For these samples, the measured lifetimes values exceeded 5 ms depending on the wavelength. For the samples codoped with Er³⁺ Yb³⁺ ions, the emission spectra were obtained under excitation at 980 nm attributed at the electronic transitions ${}^4I_{11/2} \rightarrow {}^4I_{15/2}$ of Er³⁺ ions or ${}^2F_{5/2} \rightarrow {}^2F_{7/2}$ of Yb³⁺. The lifetime values from the excited state ⁴I_{13/2} (Er³⁺) for the samples annealed at 1300°C were higher than 20 ms. Intense upconversion luminescence was observed under 980 nm, affording a yellowish-green emission that can be seen by the naked eyes. The long lifetimes values observed in these samples suggest that these materials are suitable for in time-resolved analysis, including bioimaging techniques [3].

Acknowledgments: Capes, CNPq, FAPESP and the University of São Paulo

References

- [1] Ege, A., et al. "Spectral emission of rare earth (Tb, Eu, Dy) doped Y2Sn2O7 phosphors." Journal of luminescence 143 (2013): 653-656.
- [2] Binnemans, Koen. "Interpretation of europium (III) spectra." Coordination Chemistry Reviews 295 (2015): 1-45
- [3] Ma, Qinqin, et al. "Recent progress in time-resolved biosensing and bioimaging based on lanthanide-doped nanoparticles." Small 15.32 (2019): 1804969.