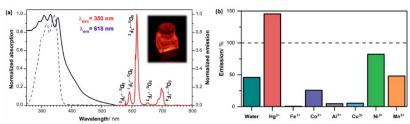


Belo Horizonte, September 12 - 15th 2024

Exploring Antenna Effects and Metal Ion Sensing in a 2D Europium(III) Coordination Network with a Rigid Diyne-Based Ligand

Catiúcia R. M. O. Matos, ¹ Carolina B. P. Ligiero, ¹ Mikaelly O. B. de Sousa, ¹ Henrique C. S. Junior, ¹ Gláucio B. Ferreira, ¹ Jackson A. L. C. Resende, ² and Célia M. Ronconi ¹

¹Departamento de Química Inorgânica, Campus do Valonguinho, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil.


²Instituto de Ciências Exatas e da Terra, Campus Universitário do Araguaia, Universidade Federal do Mato Grosso, 78600-000, Barra do Garças, MT, Brazil.

E-mail:<u>cmronconi@id.uff.br</u>

Thematic Area: Rare Earths

Keywords: Europium(III), coordination network, sensor

Coordination Networks (CNs) featuring emissive components, such as lanthanide(III)-based 2D CNs, show great promise as fluorescence-sensing systems. Through an indirect mechanism, the sensitizer ligand coordinated to the Ln(III) center harvests excitation energy and transfers it to the metallic center within the structure.² In this study, a novel 2D Eu³⁺ coordination network (EuCN) was synthesized by a solvothermal reaction at 120 °C for 48 h using Eu(NO₃)₃·6H₂O and the rigid H₂L1 proligand, which contains an elongated and rigid spacer bearing two triple bonds.^{3,4} The unreported crystal structure of **EuCN** was determined by single-crystal X-ray diffraction. Spectroscopic measurements of **EuCN** in DMSO (0.3 mgmL⁻¹) showed that upon excitation at 350 nm, the emission spectra displayed the typical emission pattern of Eu³⁺, characterized by five narrow emission bands at 579, 591, 616, 653 and 698 nm, attributed to the ${}^5D_0 \rightarrow {}^7F_J$ (J = 0.4) transitions. Notably, the ligand's emission was absent, suppressed by the antenna effect. Theoretical calculations using time-dependent density functional theory (TD-DFT) methods (at the ωB97X-D3/Def2-TZVP level) supported this phenomenon, predicting efficient ligand-to-metal charge transfer transitions that sensitize the Eu³⁺ luminescence in this binuclear system. Investigation into the sensing properties of EuCN towards various metal ions revealed distinct responses: its fluorescence was completely quenched in the presence of Cu²⁺ and Fe³⁺ ions due to the inner filter effect. Conversely, the addition of Hg²⁺ ions resulted in an increase in emission, attributed to the chelation-enhanced fluorescence (CHEF) process. Therefore, the development of EuCN-based sensors represents a promising field for environmental monitoring, particularly in the detection of trace amounts of hazardous metal ions in water sources.

Figure 1. (a) Absorption (full line), excitation (dotted blue line) and emission (red line) spectra of **EuCN** in DMSO; (b) Emission (%) of **EuCN** in the presence of metal ions.

Acknowledgments: CAPES, CNPq, FAPERJ

References

[1] Li, B. et al., Advanced Materials, 28, 8819 (2016).

[2] Wu, L. et al., JACS Au, 2, 853 (2022).

[3] Martins, V. et. al., CrystEngComm, 19, 3103 (2017).

[4] Matos, C. R. M. O. et al., <u>Dalton Transactions</u>, **50**, 15003 (2021).