

Belo Horizonte, September 12 - 15th 2024

Europium Complexes as Luminescent Sensitizers in Near-Infrared Persistent Phosphors

<u>Leonardo H. C. Francisco¹</u>, Renan P. Moreira¹, Maria C. F. C. Felinto¹, Oscar L. Malta² and Hermi F. Brito³

¹Nuclear and Energy Research Institute, National Nuclear Energy Commission, Sao Paulo, Brazil.

²Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Brazil.

³Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil.

E-mail: <u>leo.francisco@usp.br</u>

Thematic Area: Rare-Earths

Keywords: Europium complex, Persistent phosphors, Near-infrared.

Current research on the development of rare-earth-doped luminescent materials using luminescent sensitizers in the form of organic ligands or dyes aims to increase light absorption and tune emission by energy transfer via the antenna effect. [1,2] Hence, in this work, we propose the investigation of the tris-Eu³⁺ thenoyltrifluoroacetonate (tta) complex as a luminescent sensitizer in novel near-infrared (NIR) persistent phosphors. To synthesize these materials, firstly the europium complex was prepared by precipitation of a solution containing the tta ligand and europium chloride utilizing NH₄OH. Then, a Cr³⁺-doped mixed Zn/Mg/Sn oxide (ZMSC) persistent phosphor was prepared by the ceramic method, sintering the oxide precursors at 1200 °C. Finally, the Eu³⁺ complex was functionalized on the persistent phosphor by microwave-assisted surface silanization using 3-Aminopropyltrimethoxysilane. Powder Xray diffraction results revealed an inverse spinel structure of the inorganic phosphor accounting for the formation of M₂SnO₄ (M: Zn and Mg) in addition to a broad band assigned to the formation of a SiO₂ amorphous polymeric shell which supports coordination with the europium complex. UV-Vis and luminescence spectroscopy measurements were performed to probe the band gap energy and electronic transitions, where efficient Eu³⁺ to Cr³⁺ energy transfer was observed by ligand sensitization. Furthermore, X-ray fluorescence (XRF), X-ray absorption near edge structure (XANES), and X-ray excited optical luminescence (XEOL) experiments were carried out using synchrotron radiation (Fig. 1), where Cr and Eu distribution were investigated alongside the absorption and emission profiles under Cr K-edge and Eu L-edge, further supporting the efficiency of the Eu³⁺ complex to sensitize NIR luminescence.

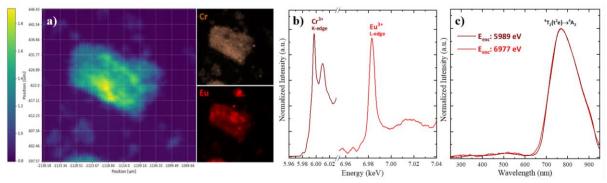


Fig. 1: a) XRF maps filtered for Cr and Eu distribution. b) XANES and c) XEOL spectra recorded under both Cr Kedge and Eu L-edge of ZMSC@SiO₂-Eu(tta)₃ persistent phosphor.

Acknowledgments: The authors acknowledge funding provided by the Brazilian agencies CNPq, CNEN, and FAPESP (2021/08111-2)

References

- [1] F. Zhao et al., Laser Photonics Rev, 16, 2200380 (2022).
- [2] X. Zhu et al., ACS Materials Lett, 4, 1815 (2022).