

Belo Horizonte, September 12 - 15th 2024

Lessons on magnetic anisotropy from lanthanide-chalcogen complexes

José Severiano C. Neto,¹ Lucas G. Fachini,¹ Diego E. L. Seckler,¹ Francielli S. Santana,¹ Arsen Raza,² Matteo Briganti,¹ Mauro Perfetti,² Jaísa F. Soares¹

¹Departamento de Química, Universidade Federal do Paraná, Curitiba-PR, Brazil
² Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Firenze, Italy
E-mail: joseseveriano@ufpr.br

Thematic Area: Rare-Earths

Keywords: Lanthanide-chalcogen complexes, Single-Molecule Magnets, Ab initio

Lanthanide complexes exhibit high magnetic anisotropy, which can be tuned by appropriate molecular design. In the present work, dichalcogenoimidodiphosphinate ligands, $N(EPPh_2)_2^-$ (E = O, S, and Se), [1] produced six crystalline $[Ln\{N(EPPh_2)_2\}_3]$ complexes (Ln = Dy or Er, Fig. 1a) characterized by structural, spectroscopic, and magnetometric analyses. Changing the chalcogen donor atoms led to significant structural changes in the resulting complexes, with a relevant impact on magnetic properties. Six and nine-coordinate Ln3+ ions were observed with the lighter chalcogens (O and S, respectively), while Se gave rise to seven-coordinate products. For the former, the short Lnchalcogen bond distances and crowded coordination spheres led to fast magnetic relaxation due to high rhombicity, confirmed by ab initio calculations. Conversely, in [Dy{N(SePPh₂)₂}₃], the additional coordination of one nitrogen atom led to a uniquely favorable Dy-N axis corresponding to the easy anisotropy axis of the structure. Ab initio calculations revealed for this complex a perfectly axial ground state mainly composed by the highest m_J projection ($m_J = \pm 15/2$; $g \approx [0, 0, 20]$) and a first excited state at higher energy than in all other complexes in the series (Fig. 1b). AC magnetic susceptibility measurements confirmed the theoretical findings, revealing slow magnetic relaxation for [Dy{N(SePPh₂)₂}₃] in both zero and applied static fields. These results highlight the importance of tailored syntheses in fine-tuning magnetic properties.

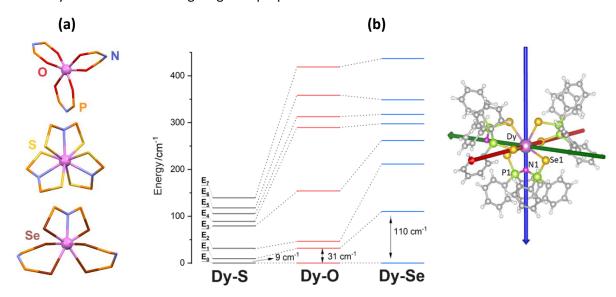


Figure 1: (a) Representation of the $[Ln\{N(EPPh_2)_2\}_3]$ coordination geometries. (b) Left: Calculated energies of the $^6H_{15/2}$ Kramer's doublets (E_n) in the Dy $^{3+}$ complexes. Right: Structure of $[Dy\{N(SePPh_2)_2\}_3]$, emphasizing the easy magnetization axis in the ground state (blue).

Acknowledgments: UFPR/PROEX-Capes/CNPq/ERC-ELECTRA

References: [1] P. B. Hitchcock *et al.*, <u>Inorg. Chim. Acta</u>, **96**, 77 (1985); (b) F. T. Wang *et al.*, <u>Synth. React. Inorg. Met. Org. Chem.</u>, **8**, 119 (1978).