

Belo Horizonte, September 12 - 15th 2024

After-griding suppression of Persistent Luminescent SrS:Eu²⁺,Sm³⁺ material

<u>Kauan Matheus Fiorotto</u>, Douglas Lourenço Fritzen, Elaine Andrade de Mattos, Lucas Carvalho Veloso Rodrigues

Department of Fundamental Chemistry, University of São Paulo, São Paulo, Brazil

E-mail: kauan.fiorotto@usp.br

Thematic Area: Rare-Earths

Keywords: persistent luminescence, defects, quenching

Efficient red persistent luminescence (PeL) materials are scarce, especially when compared to blue and green emitting phosphors and SrS:Eu²⁺,Sm³⁺ is a good candidate to fulfill this need. In this material Eu²⁺ in a strongly covalent environment exhibits intense red emission and Sm³⁺ is responsible for creating charge compensating defects responsible for storing charge carriers. These stored charges, with the aid of thermal energy, are responsible for the afterglow. However, we observed that intense grinding of this material causes a suppression in both duration and intensity of PeL effect. This work aims to comprehend the effects of grinding in the crystalline and defect structure. For this purpose, SrS:Eu²⁺,Sm³⁺ was prepared through microwave assisted solid state synthesis (MASS), using strontium sulfate, rare earth oxides and sulfur. Charcoal was used as the microwave susceptor and for generating in situ CO reducing atmosphere. The material was characterized by Raman spectroscopy, X-ray diffraction and photoluminescence spectroscopy prior and after grinding, indicating a strong quenching in the stored charge carriers. The results indicate that there is competition between the new defects created by grinding and those responsible for the persistent luminescence phenomenon.

Acknowledgments: Fapesp project 2021/05603-1 and 2021/08111-2

References

[1] DOA Dos Santos et al., <u>Dalton Transactions</u>, **49**, 16386-16393 (2020).