

Belo Horizonte, September 12 - 15th 2024

Lutetium(III) centered metallacages of the type [LuM₂L₃]NO₃ (M= Mn²⁺, Cu²⁺, and Zn²⁺; L = 2,6-dipicolinoylbis(N,N-diethylthiourea))

Drielly A. Paixão ¹, Sarah Spreckelmeyer², Ulrich Abram² and Pedro I. S. Maia¹

¹Núcleo de Desenvolvimento de Compostos Bioativos (NDCBio), Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.

E-mail: pos-doc.driellypaixao@uftm.edu.br

Thematic Area: Rare-Earths

Keywords: Metal complexes, Heterometallic complexes, Radiopharmaceuticals

Metallacages containing multiple cations present interesting chemical features and may serve as a platform in nuclear medicine for incorporation of radionuclides used in imaging or therapy like ⁶⁸Ga and ¹⁷⁷Lu. [1] In the present work, we report the synthesis and characterization of three new complexes that combine Lu³⁺ and M²⁺ ions from the first transition metal row with 2,6-dipicolinoylbis(N,Ndiethylthiourea), H_2L , as ligand. The resulting in complexes of composition $[LuM_2(L)_3]NO_3$, where M = Mn²⁺, Cu²⁺, and Zn²⁺. The FTIR spectra of the complexes confirm the deprotonation of the ligands by the absence of the vNH, found at 3273 cm⁻¹ in the spectrum of H₂L. The chelate formation is confirmed by the shifts of the vC=O vibration from 1686 cm⁻¹ in H_2L to approximately 1586 cm⁻¹ in the complexes. The ESI mass spectra of the complexes show the expected molecular ion peaks for [M]+. The composition of [LuM₂(L)₃]NO₃ was also confirmed by the elemental analysis values. Furthermore, the [LuZn₂(L)₃]NO₃ complex was characterized by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic crystal system and $P2_1/c$ space group. Each Zn^{2+} center is coordinated to three sulfur and three oxygen donor atoms forming a distorted trigonal bipyramidal coordination sphere as shown in Figure 1. The Lu³⁺ center is coordinated to three nitrogen and six oxygen donor atoms and, consequently, shows a coordination number of nine and a tricapped trigonal prism polyhedron (see Figure 1). These products might have potential applications in nuclear medical procedures using the ¹⁷⁷Lu nuclide.

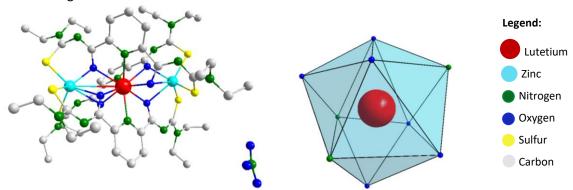


Figure 1: Molecular structure of [LuZn₂(L)₃]NO₃ and the coordination polyhedron around the Lu³+ ion.

Acknowledgments: FAPEMIG and CNPq

References

[1] A. Baitullina et al., EJNMMI Radiopharmacy and Chemistry, 8, 40 (2023).

² Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany