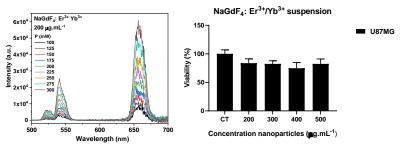


Belo Horizonte, September 12 - 15th 2024

Upconverting NaGdF₄: 5% Er³⁺, 20% Yb³⁺ nanoparticles for theranostics


<u>Luiz Fernando dos Santos ¹</u>, Karmel de O. Lima¹, Hiago Salge Borges², Luiza Araújo Gusmão², Antônio Claúdio Tedesco², Philippe Goldner³ and Rogéria Rocha Gonçalves¹

¹Laboratório de Materiais Luminescentes Micro e Nanoestruturados - Mater Lumen, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto

Thematic Area: Rare-Earths

Keywords: fluorides, rare-earths, theranostic

Upconverting nanoparticles (UCNPs) have expanded possibilities in the development of advanced nanomaterials for nanomedicine and healthcare applications, including photodynamic therapy, bioimaging, and temperature sensors¹. In this sense, herein, Er^{3+} , Yb^{3+} co-doped NaGdF₄ were synthesized using an EDTA-assisted hydrothermal method. Transmission Electron Microscopy (TEM) images revealed that the nanoparticles have a spherical shape with a narrow size distribution of approximately 250 nm. Photoluminescence spectroscopy under near-infrared (NIR) excitation at 980 nm showed intense visible upconversion (UC) emission from ensemble and also from a colloidal dispersion of nanoparticles in cell culture medium (depicted in Figure 1). The UC emission spectra show narrow bands centralized at 520 nm assigned to $^2H_{11/2} \rightarrow 4I_{15/2}$ and $^4S_{3/2} \rightarrow ^4I_{15/2}$ in green region and 630 nm, assigned to $^4F_{9/2} \rightarrow ^4I_{15/2}$ under excitation at 980 nm. The cytotoxicity of these nanoparticles was assessed using the resazurin colorimetric test on glioblastoma multiforme cell lines, KNS42, U87MG, and T98G, after 3 hours of incubation. The cell viability remained around 70% for U87MG and T98G, while it was around 40% for KNS42. These preliminary results suggest that rare-earth-doped fluoride-based nanoparticles hold potential as luminescent probes and light converters in photodynamic therapy for brain tumor treatment.

Figure 1. Upconversion emission spectra from Er³⁺, Yb³⁺ NaGdF₄ nanoparticles suspended in culture cell medium and cytotoxic viability of the particles in U87MG cells.

Acknowledgments: FAPESP (Processes 2020/04157-5 and 2021/08111-2), CNPq and University of

São Paulo

1. Idris, N. M. et al. Nat. Med. 18, 1580–1585 (2012).

² Centro de Nanotecnologia e Engenharia Tecidual – CNET Departamento de Química, Faculdade De Filosofia, Ciências e Letras de Ribeirão

³ IRCP, Chimie ParisTech, CNRS, PSL Research University, Paris, France E-mail: luiz2.santos@usp.br