

Belo Horizonte, September 12 - 15th 2024

Modeling Lifetimes of Excited States in Mixed Coordination Compounds of Eu³⁺ and Tb³⁺

Iran F. Silva¹, Renato H. M. Galdino¹, Elaine S. Vasconcelos¹, Ercules E. S. Teotonio¹, Oscar L. Malta² and Wagner M. Faustino¹

¹Department of Chemistry, Federal University of Paraíba, João Pessoa, Brazil ²Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, Brazil E-mail: wmfaustino@quimica.ufpb.br

Thematic Area: Rare-Earths

Keywords: lanthanides, mixed complexes, luminescence

In this study, we applied two models, recently proposed by our group, for modeling lifetimes of excited states in mixed complexes of Eu³+ and Tb³+[1]. Both models consider a statistical distribution of Eu³+ and Tb³+ ions in the crystal lattice to calculate ion-ion energy transfer rates, following literature procedures. In Model 1, n sets of rate equations are solved for the n shortest Eu³+-Tb³+ distances, where ion-ion energy transfer rates are non-zero. Using the fourth-order Runge-Kutta method and the Malta et al. model [2] for ligand-to-metal energy transfer rates and LMCT states, the simulated luminescence decay curve is obtained as a superposition of fitted exponentials, weighted by the distribution coefficients for the n distances. In Model 2, the average ion-ion transfer rate is initially calculated, considering the statistical distribution of Eu³+-Tb³+ distances in the crystal lattice. Then, a single set of rate equations is solved using the fourth-order Runge-Kutta method, also considering the Malta et al. model [2]. An example is shown in Figure 1 for modeling the lifetime of the ⁵D₄ level of the Tb³+ ion in the compound (Hphen)₂[EuTb(2-OHBz)₈(H₂O)₂]·2H₂O [1]. Model 1 has proven more satisfactory than Model 2 and also more effective than a widely used methodology in the literature [3], which resulted in a lifetime 39% shorter than the experimental value for the example below.

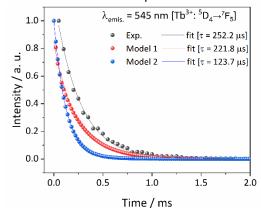


Figure 1: Decay Curves for the ${}^5D_4 \rightarrow {}^7F_5$ Transition of Tb³⁺ in (Hphen)₂[EuTb(2-OHBz)₈(H₂O)₂]·2H₂O.

Acknowledgments: UFPB, Capes, CNPq, and Finep.

References

- [1] E. S. Vasconcelos et al., J. Lumin., 272, 120648 (2024).
- [2] A. N. Carneiro Neto. et al., Handbook on the Physics and Chemistry of Rare Earths 56, 55 (2019).
- [3] V. Trannoy et al., Adv. Opt. Mater. 9, 1 (2021).