

Belo Horizonte, September 12 - 15th 2024

A novel hybrid decayanadate with a dicationic imidazolium ionic liquid

<u>Lorena M. Braga ¹</u>, Andressa V. Hilário², Grazielli da Rocha¹, Tatiana Zanette³, Pascual Oña-Burgos³, Katia B. Gusmão², Christian W. Lopes¹, Francine Bertella¹ and Giovana G. Nunes¹

¹Departmento de Química, Universidade Federal do Paraná, Curitiba, Brazil
²Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
³Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de
Investigaciones Científicas, Valência, Espanha
E-mail: lorena.moreira@ufpr.br

Thematic Area: Supramolecular Chemistry

Keywords: decavanadate, ionic liquid, dicationic imidazolium

Hybrid decavanadate ($[H_xV_{10}O_{28}]^{(6-x)}$ or V_{10}) salts featuring organic cations are highly fascinating materials for diverse applications, such as gas adsorption and catalysis. 1,2 The direct reaction of the ionic liquid 1,1'-(1,4-phenylenebis(methylene))bis(3-methylimidazolium) bromide (PhimBr₂) with V₁₀ in aqueous solution produced yellow crystals of a new compound (Phim)₂[H₄V₁₀O₂₈]·6H₂O (PhimV₁₀, Figure 1). The product was characterized by infrared spectroscopy (IR), single-crystal and powder Xray diffraction, elemental and thermogravimetric analysis (TGA). PhimV₁₀ crystallizes in a triclinic space group, P-1 crystal system. The asymmetric unit contains half of tetra-protonated decavanadate, one Phim²⁺ cation and 3 water molecules. The supramolecular network is defined by an extensive net of weak to moderate hydrogen bonding (C···H-O and O···H-O) involving the V₁₀, water molecules and cations. Phim²⁺ are organized in pairs through a single $\pi \cdots \pi$ stacking interaction with a distance between centroids of 3.723 Å. The TGA showed a series of events corresponding to the loss of the 6 water molecules (Exp.7.02%; Theor. 6.73%) up to 150 °C and the thermal decomposition of the two Phim²⁺ cations (ca. 35% of weight loss) around 450 °C. Therefore, the sample was treated at 150 °C for 3 h prior the catalytic reaction to remove the water molecules. The IR spectrum of the reminiscent solid presented bands at 1556, 1153, 964 and 587 cm⁻¹, assigned to the v(C-C), v(C-N), v(V=O) and v(V-O-V) and the absence of bands expected for the water molecules. The catalytic performance for carbon dioxide fixation was investigated using propylene oxide and ZnBr2 as co-catalyst. The preliminary catalytic results of **PhimV**₁₀ exhibited moderate yield towards propylene carbonate (58%), highlighting its potential as a catalyst for CO₂ fixation into cyclic carbonates.

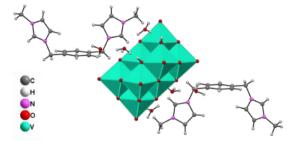


Figure 1: Polyhedral representation of $(C_{16}H_{20}N_4)_2[H_4V_{10}O_{28}]\cdot 6H_2O$.

Acknowledgments: UFPR/CAPES/CNPq/FUNDAÇÃO ARAUCÁRIA/PROEX

References

- [1] A. García-García et al., <u>Inorganics</u>, **9**, 67 (2021).
- [2] Y. Zhao et al., Crystal Growth & Design, 21, 1019-1027 (2021).