

Belo Horizonte, September 12 - 15th 2024

A decavanadate containing copper(II) cyclen-complexes: synthesis, theoretical calculations and methylene blue adsorption studies

Heloísa de Souza Camilo,**a Lucas Gian Fachini,*a Gabriel Barros Baptistella,*a Juliana Morais Missina,*a Lorena Moreira Braga,*a Francine Bertella,*a Patrizia Rossi,*b Paola Paoli,*b Eduardo Lemos de Sá,*a <u>Giovana Gioppo Nunes</u>*a

Departamento de Química, Universidade Federal do Paraná, Curitiba, Brasil
Dipartimento di Ingegneria, Università degli Studi di Firenze, Firenze, Italy.
E-mail:nunesgg@ufpr.br

Thematic Area: supramolecular chemistry

Keywords: decavanadate, theoretical calculations, methylene blue adsorption

Decavanadate, $[H_xV_{10}O_{28}]^{(6-x)-}$, V_{10} , has been widely used as a building block for creating complex supramolecular structures [1]. A novel metal-organic hybrid decavanadate decorated with a copper(II) complex of the macrocycle cyclen (1,4,7,10-tetraazacyclododecane) was synthesized and characterized by diffractometric and spectroscopic techniques. Single-crystal X-ray diffraction analysis revealed that, in the molecular structure of $[\{Cu(cyclen)\}_2(V_{10}O_{28})]\cdot 6H_2O$ (Cu-cyclen-V₁₀), the two $[\{Cu_2(cyclen)_2\}^{2+}$ moieties are bound to V_{10} through μ_3 -O atoms (Figure below). To the best of our knowledge, it is a new coordination mode of Cu^{II}-V₁₀, which was studied through computational methods, such as Density Functional Theory (DFT) at the B3LYP/LANL2DZ level, Non-Covalent Interaction (NCI), and Independent Gradient Model (IGM). The low Intrinsic Bond Strength Index value of 0.105 indicates a weak $Cu-\mu_3-O(V_{10})$ covalent interaction, ca. 2/3 of a usual coordination bond. Moreover, the NCI analysis revealed that Cu-cyclen-V₁₀ exhibits strong intermolecular interactions between V₁₀ and the copper(II) complex, evidencing that non-covalent interactions play a key role in stabilizing the particular conformation presented by the metal-organic aggregate. Cu-cyclen-V_{10} was active in bleaching a methylene blue (MB) aqueous solution at 10 mg L-1, achieving 84% of color removal in only 40 min. Physisorption studies with N_{2(g)} gave a type II adsorption isotherm, a calculated BET-specific surface area of 6 m² g⁻¹, and a measured total pore volume of 0.01 cm³ g⁻¹, supporting the compound's fundamentally nonporous nature. Our findings suggest that MB adsorption most likely takes place on the external surface of the Cu-cyclen-V₁₀ particles.

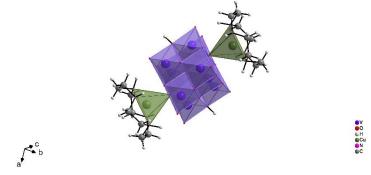


Figure 1. Polyhedral representation of Cu-cyclen-V₁₀.

Acknowledgments: CAPES/CNPq/UFPR/CAPES-PrInt

References

[1] J. K. Li, C. P. Wei, Y. F. Han, C. W. Hu. <u>Dalton Transaction</u>, **52**, 12582 (2023).