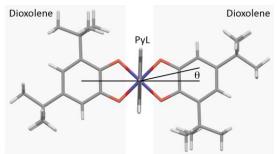


Belo Horizonte, September 12 - 15th 2024

STRUCTURAL AND ELECTRONIC PROPERTIES OF THE VALENCE TAUTOMERISM IN Co(DIOXOLE)₂PY₂ CRYSTALS


Marcelo F. F. Alecrim, Simone S. Alexandre and Carlos B. Pinheiro

Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil E-mail :cbpinheiro@ufmg.br

Thematic Area: Supramolecular chemistry

Keywords: smart materials, valence tautomerism, dioxolene

This study investigates the chemical environmental factors influencing valence tautomerism (VT) in trans pyridine-solvated Co(dioxolene)₂(Py)₂ complexes, where dioxolene represents 3,5-di-tert-butyl semiquinone and 3,5-di-tert-butyl catecholate, and Py stands for pyridine [1]. Co(dioxolene)₂(Py)₂ crystals with complex/solvent ratios of 1:0, 2:1, and 1:2 were analyzed using single-crystal X-ray diffraction across a wide temperature range to understand the influence of crystal packing and solvation on VT interconversion. Our findings show that the orientation of pyridine with respect to the dioxolene plane (θ in Figure 1) directly correlates with the possibility of LS-CoII \Leftrightarrow HS-CoII VT interconversion. A survey of Co(dioxolene)₂(PyL)₂ structures in the CCDC [2] also reveals a correlation between θ and the electronic/magnetic state of $Co(dioxolene)_2(PyL)_2$ complexes. To further understand this effect, we performed DFT calculations in 2:1 complex considering both single molecules and an extended crystalline lattice. The magnetic susceptibility curve as a function of temperature obtained with the LDA functional is in good agreement with experimental results [3]. Indeed the cobalt atoms in solid are borderline, meaning they can change their magnetic state with small changes in the Co-N and Co-O bond distances. The net spin density is centered on Co and decreases monotonically upon cooling on the oxygen atoms of the dioxolene. Additionally, the energy associated with LS-CoIII correlates with θ , as suggested by the structure analysis, highlighting the pyridine role in determining the electronic state of Co(dioxolene)₂(PyL)₂ complexes.

Figure 1: relative orientation of the pyridine-like ligands in relation to the dioxolene planes

Acknowledgments: CNPq, FAPEMIG

References

- [1] F. Z. M. Zahir, M. A. Hay, J. T. Janetzki, R. W. Gable, L. Goerigk, and C. Boskovic, Chemical Science **15**, 5694 (2024).
- [2] F. H. Allen, Acta Crystallographica Section B: Structural Science **58**, 380 (2002).
- [3] Y. Mulyana, K. G. Alley, K. M. Davies, B. F. Abrahams, B. Moubaraki, K. S. Murray, and C. Boskovic, Dalton Transactions **43**, 2499 (2014).